A Neural Network Approach for Controller Area Network Message Scheduling Control
نویسندگان
چکیده
bandwidth can be shared properly among different messages. CAN was initially developed for the automotive industry to solve the cabling problems found in some kinds of vehicles. However, CAN is not able to satisfy all the communication needs of the industrial automation and process control scenarios. In particular, the basic protocol in CAN can neither ensure deterministically bounded transmission times for RT (real-time) data exchanges nor a fair share out of the network bandwidth among non-RT application processes. Therefore, CAN must carry both RT messages as well as non-RT messages in order to meet the requirements of a dynamic distributed system. All these messages must be properly scheduled on the network so that RT messages meet their deadlines while co-existing with non-RT messages. To solve these problems, we present a neural network approach to dynamically schedule and distribute the system bandwidth. At the same time, the transmission time can meet the basic requirements. The experimental results clearly show the effectiveness of the proposed technique in solving the message scheduling problems in CAN.
منابع مشابه
Hybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term
This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...
متن کاملAdaptive RBF network control for robot manipulators
TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...
متن کاملNeural Controller Design for Suspension Systems
The main problem of vehicle vibration comes from road roughness. An active suspension systempossesses the ability to reduce acceleration of sprung mass continuously as well as to minimizesuspension deflection, which results in improvement of tire grip with the road surface. Thus, braketraction control and vehicle maneuverability can be improved consider ably .This study developeda new active su...
متن کاملA New Recurrent Fuzzy Neural Network Controller Design for Speed and Exhaust Temperature of a Gas Turbine Power Plant
In this paper, a recurrent fuzzy-neural network (RFNN) controller with neural network identifier in direct control model is designed to control the speed and exhaust temperature of the gas turbine in a combined cycle power plant. Since the turbine operation in combined cycle unit is considered, speed and exhaust temperature of the gas turbine should be simultaneously controlled by fuel command ...
متن کاملDesign of an Adaptive-Neural Network Attitude Controller of a Satellite using Reaction Wheels
In this paper, an adaptive attitude control algorithm is developed based on neural network for a satellite using four reaction wheels in a tetrahedron configuration. Then, an attitude control based on feedback linearization control is designed and uncertainties in the moment of inertia matrix and disturbances torque have been considered. In order to eliminate the effect of these uncertainties, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006